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An idea underlying most turbulence models is to describe the large scales by Euler inviscid equations. The concept of
solution must then be weakened to obtain turbulent fields that are sufficiently rough to provide a finite dissipation of
kinetic energy. This strongly questions classical approaches because solutions become spontaneously stochastic and non-
unique. Still, this opens the way to new strategies able to provide an intrinsically probabilistic construction of solutions.

Local energy dissipation in a slice of a three-dimensional
homogeneous turbulent flow at Ry ~ 730.

Turbulence vs. Euler inviscid dynamics Spontaneous stochastic behavior of rough velocities
V-u=0

, Example: Kelvin—Helmholtz vortex sheet
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+U singular velocity field
o 2 T2 e The mixing layer
@ Dissipative anomaly: ep = = (|[Vu + Vu'||*) — const — g ayet
2 U reaches a finite size
@ Onsager’s criterion: |u(z + £) — u(x)| ~ £" with h < 1/3 l in a finite time,
= Turbulent velocity fields are rough even when the

initial perturbation
1s sent to zero

Explosive instability

Construct admissible (dissipative) weak solutions to Euler’s equation

= Almost all non-smooth initial conditions give non-uniqueness

Brenier et al. (2011); Buckmaster et al. (2016) Inviscid dynamics with a singular initial condition is less predictable
than any chaotic system

Tracers explosive separation ——Fowad | Need for an intrinsically probabilistic description
. —v— Backward
Richardson’s law /i\ @ Weak solutions to Euler equation are very often non-unique
R(t) = X (t, zo) + X (£, ) é @ The velocity can be spontaneously stochastic
C(li—f x R" non-Lipschitz 2 @ Non-differentiable velocities lead to explosive separation of tracers

@ A non-unique Lagrangian flow explains anomalies of passive scalars

100 —— P T = Suggests to relax the notion of “velocity field”
o , , i , p(x’,t+ 6t |z, 1)
I'he Lagrangian flow is non-unique
= o s . x & u(x,t) — V(1) (du) Young measure
s I'his largely explains intermittency of
advected passive scalars DiPerna and Majda (1987): distributional solutions

Falkovich et al. (oo1)

Lagrangian formulation of inviscid dynamics Brenier’s generalized flows

Extend the least action principle to probability measures on paths p[X (-, -
On X (t,xg) = —Vp(X(t,x0),t) + V2Un(t) pHneip P Y paths p[ X (-, )]

(Aot [ X ()]) := / DX p[X(-)] Ao,:[X(-)] — inf  Kinetic energy is

- minimized in average
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Pressure = Lagrange multiplier for incompressibility constraint

Arnold 1966 least-action principle:
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AO,tf [X()] — / dt/ dxg —‘675X(t, CB())P s Subject o e - i , space-time coarse-gramed
0 D E == i inviscid dynamics in terms of
X (0, 20) = o, X (tr,w0) = X¢(xo), and —1 doubly .stochast1c .rr.la.tnces
0xg ol ot (transition probabilities)

S . : . Perspectives
Application to the two-dimensional direct cascade

@ Extensions to three-dimensional flows

w(x,t)

@ Exploit the least-action principle to derive generalized (Noether) invariants

@ Bridge explosive separation of tracers and Eulerian spontaneous stochasticity
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