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The physical nature of randomness: standard picture

Quantum world: Randomness is intrinsic

Source: www.minutephysics.com

Classical world: Randomness is only apparent

Source: www.chaos-math.org

Lorenz ’62 : Unpredictability ties to chaotic
exponentiation of small initial errors:

δ(t) = δ0eλt
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Lorenz ’69 conjecture

I Formally deterministic dynamics
I Finite-time emergence of randomness
I Outcome independent from the observer:

unlike chaotic exponentiation, where finite-time errors can be made arbitrarily small
⇒ Intrinsic, yet classical randomness.
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Intrinsic randomness of high-Reynolds fluids ?

Rλ ∝ ν−1/2

Source: Kaneda & Ishihara, 2003, Phys. Fluids

ν
〈 ‖
∇
u
‖2
〉

δv ∼
ν→0

ε1/3`1/3δv ∼
ν→0

ε1/3`1/3

ν
〈
‖∇u‖2〉

→
ν→0

ε > 0

Random Dissipative Rough

Navier-Stokes equations
∂tv + v · ∇v +∇p = ν∇2v + f, ∇ · v = 0
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Two simpler examples of intrinsic randomness

Fluid trajectories Shear layer instability

In both examples, intrinsic macroscopic randomness will emerge from a subtle interplay
between thermal noise and the presence of some type of small-scale roughness.

This is the framework of spontaneous stochasticity. 7 / 28
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The spontaneous stochasticity mechanism

Roughness produces infinite amplification of thermal noise in finite-time.
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Advection in random Gaussian fields

dXκ,η = dvη(t,X) +
√
2κ dW, vη(x + r)− vη(x) ∼ rh as r , η → 0

h ∈ [0, 1]: spatial roughness η: smoothing κ : thermal noise.

10−4 10−3 10−2 10−1 100

r

10−2

10−1

100

〈 (v
(x

+
r)
−
v

(x
))

2〉
1/

2

rh

r
η →
smoothing scale

O(1)→
Large scale

‘Inertial scales‘

0 1
x

−2

−1

0

1

2

V
el

oc
it

y
p

ro
fil

e

11 / 28



Solvable Example: White-in-time velocities

〈dvη(t, x)dvη(t ′, x′)〉 = Cη,h(x− x′)δ(t − t ′)dt

For suitable limits η, κ→ 0, initially
coincident trajectories may reach O(1)

separations,

I in finite time,
I with probability 1.

=⇒ such trajectories are
“spontaneously stochastic”. −1 0 1
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Spontaneous stochasticity and exit-times

Spontaneous stochasticity⇐⇒ ∃ lim
r0,η→0
κ→0

P [τ1 <∞] = 1,

with τη(r0, η, κ) := inf {t, ‖R‖η < η} τL(r0, η, κ) := inf {t, ‖R‖η > L}

Example: 2 particles in a rough 1d field

I Separations are governed by the operator

L2 := 2K2∂rr , K2 := D0
2 ‖r‖

ξ
η + κ

I Whether or not particles separate depends on the small-scale!

P [τ1 < τη] = r0 − η
1− η →r0,η→0 0

I Statistics map to Bessel process in dimension df = 21− ξ2− ξ
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The spontaneous stochasticity mechanism

Roughness produces infinite amplification of thermal noise in finite-time.
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Interplay between noise and viscosity:
Overdamped Brownian particle in singular potential

Algebraic separation R(t) := X ′(t|0)− X (t|0)

dR = −U ′h,η (R) dt +
√
2κ dW , Uh,η(R) := 1− ‖R‖η1+h,

h < 1: spatial roughness η: smoothing κ : thermal noise.

How much time to reach |R| = 1 from |R| = 0 ?

h < 0, η = 0 15 / 28
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The “spontaneously stochastic” limit

−1 < h < 1
Average escape time in the limit η, κ→ 0

(i) From 0 to η (ii) From η to 1

τ(0→ η) ∝ O(η1−h) + O(η2/κ) τ(η → 1) ∝ 1
(1− h)(1 + h) = O(1)

This suggests the spontaneously stochastic scaling κ ∝ η1+h
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The “spontaneously stochastic” limit.

The limit η → 0 is spontaneously stochastic for −1 < h < 1 :
I Formally deterministic: The amplitude of the noise vanishes κ→ 0

I Remanently stochastic: Particles starting from 0 reach O(1) separations in
finite-time.

17 / 28



The spontaneous stochasticity mechanism

Roughness produces infinite amplification of thermal noise in finite-time.
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Singular shear-layer instability

x

y -U/2

+U/2
κ

λ = 2π/k

Linear inviscid theory:

Exponential amplification with
growth rate σ(k) = Uk/2

When the perturbation scale vanishes, e.g. k →∞,
the growth rate explodes: σ(k)→∞

⇒ Breakdown of linear theory

When the amplitude vanishes, the inviscid problem becomes ill-posed

⇒ Singular initial-value problem
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The stochastic shear-layer instability

x
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+U/2
κ
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Physical regularization by white noise + viscosity

ν, κ→ 0

Fixed time

t = 0
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Numerical observations: (i) Finite-time amplification
(ii) Infinite gain
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The spontaneously stochastic shear-layer instability

t = O(1)

· · ·
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Example of measurement: Explosive separation of velocity fields
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In the limit η, κ→ 0,
the dynamics is stochastic from t = 0+,
but the underlying equations are formally deterministic.
⇒ It is intrinsically random
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The spontaneous stochasticity mechanism

Roughness produces infinite amplification of thermal noise in finite-time.
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Rλ ∝ ν−1/2

Source: Kaneda & Ishihara, 2003, Phys. Fluids

ν
〈 ‖
∇
u
‖2
〉

Côte d’Azur turbulent database
courtesy of S. Allende and J. Bec

5123, L/η ∼ 50

singularity spectrum
↓ δv ∼
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→
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Project 1: Pink Stochasticity

How does multi-fractality and irreversibility alter
spontaneous stochastic motion of fluid particles?

Methods
Multi-fractal random fields introduced by
Chevillard, based on Gaussian multiplicative
chaos to model intermittency.

Source: Reneuve & Chevillard, 2019

Road map
1. Numerical simulations of SDE
2. Qualitative behavior of trajectories
3. Connection to DNS signatures of

Lagrangian irreversibility

Possible developments
I Pink intermittency of scalar fields
I Statistical geometry of trajectories
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Project 2: Stochasticity of SQG turbulence

Can one identify post blow-up signatures of stochasticy in SQG turbulence?

Methods
Numerical experiments and statistical analysis of
SQG dynamics.

Road map
1. Pre-blowup: Scenario to singularities
2. Blow up : Fate of

localized/homogenous perturbations
3. Fully developed: Lagrangian

stochasticity vs intermittency

Possible developments
I Generalized SQG flows
I Stochasticity of 3D turbulence onset
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Thank you for your attention!
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