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THE PHYSICAL NATURE OF RANDOMNESS: standard picture

Quantum world: Randomness is intrinsic

A ydrogen =5, 1=2, m=1
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Source: www.minutephysics.com

Classical world: Randomness is only apparent

Deterministic Nonperiodic Flow!

Epwarp N. Lorenz

Massachusetts Institule of Technology
(Manuscript received 18 November 1962, in revised form 7 January 1963)

Lorenz '62 : Unpredictability ties to chaotic
exponentiation of small initial errors:

°
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Source: www.chaos-math.org| 5( t) _ 50 eMt
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LORENZ 69 CONJECTURE

The predictability of a flow which possesses many
scales of motion

By EDWARD N. LORENZ, Massachusetts Institute of Technologyt

(Manuscript received October 31, 1968, revised version December 13, 1968)

ABSTRACT

It is proposed that certain formally determunstlc fluid systems Whlch possess many
scales of motion are observationall di ishable from ind

spec\ilcally, that two states of the system differing initially by a small “observatlonal
error”’ will evolve into two states differing as greatly as ra.ndomly chosen states of the
system within a finite time interval, which t be I d by the
amplitude of the initial error. The hypothesis is mveshgabed with a simple mathe-
matical model. An equation whose dependent variables are ensemble averages of the
“‘error energy’’ in separate scales of motion is derived from the vorticity equation which

Formally deterministic dynamics
» Finite-time emergence of randomness

» Outcome independent from the observer:
unlike chaotic exponentiation, where finite-time errors can be made arbitrarily small

= Intrinsic, yet classical randomness. 4
/


anc/Lorenz1-8.mp4

INTRINSIC RANDOMNESS OF HIGH-REYNOLDS FLUIDS 7

Random Dissipative

Source: Kaneda & Ishihara, 2003, Phys. Fluids
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Navier-Stokes equations
Ov+v-Vv+Vp=vViu+f, V.v=0
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INTRINSIC RANDOMNESS OF HIGH-REYNOLDS FLUIDS 7

Random

Rough

Navier-Stokes equations

Ov+v-Vv+Vp=vViv+f

V-v=0
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Random
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TWO SIMPLER EXAMPLES OF INTRINSIC RANDOMNESS

Fluid trajectories Shear layer instability

In both examples, intrinsic macroscopic randomness will emerge from a subtle interplay
between thermal noise and the presence of some type of small-scale roughness.
This is the framework of spontaneous stochasticity. /28


anc/Explosive.mp4
anc/9S-8192.mp4
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THE SPONTANEOUS STOCHASTICITY MECHANISM

Roughness produces infinite amplification of thermal noise in finite-time.
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THE SPONTANEOUS STOCHASTICITY MECHANISM

Roughness produces infinite amplification of thermal noise in finite-time.

100 =

107!

Random trajectories

SDEs
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ADVECTION IN RANDOM (GAUSSIAN FIELDS

dX,. , = dv, (t,X) + V2r dW, Vy(x + 1) = vy(x) ~r" as r,n =0

h € [0,1]: spatial roughness  7): smoothing  x : thermal noise.
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SOLVABLE ExAMPLE: White-in-time velocities

(dvyy(t,x)dv, (t', X)) = Gy n(x — x")o(t — t')dt

For suitable limits 7, x — 0, initially 1
o . . 10
coincident trajectories may reach O(1)
separations,
. 100 =
» in finite time,
» with probability 1.
107
— such trajectories are

“spontaneously stochastic”.

12/28



SPONTANEOUS STOCHASTICITY AND EXIT-TIMES

Spontaneous stochasticity <= 3 |im OIP[Tl < o] =1,

ro,n—
K—0
with 7,(r0,7, 1) := inf{t, [|R[|;, < n} 71(ro,m, k) == inf {t, [[R|[; > L}
Example: 2 particles in a rough 1d field
» Separations are governed by the operator
D,
Cz = 2K28rr7 K2 = 70||r\|§,+n

» Whether or not particles separate depends on the small-scale!

rhh—mn

Pln <l = 1, ron—0 0

1—
» Statistics map to Bessel process in dimension df = 275

2-¢
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THE SPONTANEOUS STOCHASTICITY MECHANISM

Roughness produces infinite amplification of thermal noise in finite-time.

Toy models

ODEs
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INTERPLAY BETWEEN NOISE AND VISCOSITY:
Overdamped Brownian particle in singular potential

Algebraic separation R(t) := X'(t|0) — X(t|0)

dR = —U},, (R)dt + 2k dW, Upy(R) =1~ R[>,

h < 1: spatial roughness 7: smoothing K : thermal noise.

How much time to reach |R| =1 from |R| =07
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INTERPLAY BETWEEN NOISE AND VISCOSITY:
Overdamped Brownian particle in singular potential

Algebraic separation R(t) := X'(t|0) — X(t|0)

dR=—U},, (R)dt + V2kdW, Uy, (R):=1— IR,

h < 1: spatial roughness 7: smoothing K : thermal noise.

How much time to reach |R| =1 from |R| =07
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INTERPLAY BETWEEN NOISE AND VISCOSITY:
Overdamped Brownian particle in singular potential

Algebraic separation R(t) := X'(t|0) — X(t|0)

dR=—U},, (R)dt + V2kdW, Uy, (R):=1— IR,

h < 1: spatial roughness 7: smoothing K : thermal noise.

How much time to reach |R| =1 from |R| =07

1

U
N
P
,
h

—
—

0<h<1l,n#0 15/28



THE “SPONTANEOUSLY STOCHASTIC” LIMIT

-1<h<1
Average escape time in the limit ,x — 0

Y |

: 0 n \\1

R
(i) From 0 to n (i) From nto 1
1-h 2 v )
7(0 = 1) x O(n*~") + O(n?/~) T(n— 1) o A-mash (1)

This suggests the spontaneously stochastic scaling x oc ™"
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THE “SPONTANEOUSLY STOCHASTIC” LIMIT.

10 —
h Roughness h :
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T,

1077 1077 10° 10°° 1071
smoothing scale n

The limit 7 — 0 is spontaneously stochastic for —1 < h <1 :

» Formally deterministic: The amplitude of the noise vanishes K — 0

» Remanently stochastic: Particles starting from 0 reach O(1) separations in
finite-time.
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THE SPONTANEOUS STOCHASTICITY MECHANISM

Roughness produces infinite amplification of thermal noise in finite-time.

t=0(1) l

Random fields

PDEs
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SINGULAR SHEAR-LAYER INSTABILITY

A=om/k AU

, «—Up2

Linear inviscid theory:

Exponential amplification with
growth rate o(k) = Uk/2

When the perturbation scale vanishes, e.g. k — oo,
the growth rate explodes: o(k) — oo

=- Breakdown of linear theory

When the amplitude vanishes, the inviscid problem becomes ill-posed

= Singular initial-value problem
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THE STOCHASTIC SHEAR-LAYER INSTABILITY

4 Physical regularization by white noise + viscosity

5122

20482

Fixed time \
t=20

81922

N v,k — 0
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THE STOCHASTIC SHEAR-LAYER INSTABILITY

+U/ 22—
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Physical regularization by white noise + viscosity
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Numerical observations:
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81922/

N v,k — 0

(i) Finite-time amplification

(i) Infinite gain
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THE SPONTANEOUSLY STOCHASTIC SHEAR-LAYER INSTABILITY
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EXAMPLE OF MEASUREMENT: Explosive separation of velocity fields

100 102 ,,' /!__. £640(t=7)
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In the limit n,x — 0,
§ YAy FA U T $ 5% Pen§v

the dynamics is stochastic from t = 0%,
but the underlying equations are formally deterministic.

= It is intrinsically random
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THE SPONTANEOUS STOCHASTICITY MECHANISM

Roughness produces infinite amplification of thermal noise in finite-time.

Random trajectories

SDEs

Toy models

ODEs

Random fields

PDEs
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Random

Dissipative

2 Source: Kaneda & Ishihara, 2003, Phys. Fluids
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PROJECT 1: PINK STOCHASTICITY

How does multi-fractality and irreversibility alter
spontaneous stochastic motion of fluid particles?

Methods

Multi-fractal random fields introduced by
Chevillard, based on Gaussian multiplicative
chaos to model intermittency.

Road map

1. Numerical simulations of SDE Possible developments

2. Qualitative behavior of trajectories » Pink intermittency of scalar fields
3. Connection to DNS signatures of » Statistical geometry of trajectories
Lagrangian irreversibility
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PROJECT 2: STOCHASTICITY OF SQG TURBULENCE

Can one identify post blow-up signatures of stochasticy in SQG turbulence?

Methods

Numerical experiments and statistical analysis of
SQG dynamics.

Road map

1. Pre-blowup: Scenario to singularities Possible developments

2. Blow up : Fate of

i . » Generalized SQG flows
localized /homogenous perturbations

. » Stochasticity of 3D turbulence onset
3. Fully developed: Lagrangian

stochasticity vs intermittency
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Thank you for your attention!
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