

FROM RANDOM TRAJECTORIES TO RANDOM FIELDS : Is fluid dynamics intrinsically random ?

Simon Thalabard

1. Apparent vs intrinsic randomness

2. The spontaneous stochasticity mechanism

3. Open projects

THE PHYSICAL NATURE OF RANDOMNESS: standard picture

Quantum world: Randomness is intrinsic

Random numbers certified by Bell's theorem 5. Presie^{1 In}, A. Acis^{1 In}, S. Massar¹, A. Boyer de la Giroday¹, D. N. Matsukovich¹, P. Massa¹, S. Dirscherel² D. Hayes¹, L. Lui, T. A. Mavrie¹, S. C. Morree¹

Classical world: Randomness is only apparent

Deterministic Nonperiodic Flow¹

EDWARD N. LORENZ

Massachusetts Institute of Technology (Manuscript received 18 November 1962, in revised form 7 January 1963)

The predictability of a flow which possesses many scales of motion

(Manuscript received October 31, 1968, revised version December 13, 1968)

ABSTRACT

It is proposed that certain formally deterministic fluid systems which possess many scales of motion are observationally indistinguishable from indeterministic systems; specifically, that two states of the system differing initially by a small "observational error" will evolve into two states differing as greatly as randomly chosen states of the system within a finite time interval, which cannot be lengthened by reducing the amplitude of the initial error. The hypothesis is investigated with a simple mathematical model. An equation whose dependent variables are ensemble averages of the "error energy" in separate scales of motion is derived from the vorticity equation which

- Formally deterministic dynamics
- Finite-time emergence of randomness
- Outcome independent from the observer: unlike chaotic exponentiation, where finite-time errors can be made arbitrarily small

 \Rightarrow Intrinsic, yet classical randomness.

Navier-Stokes equations
$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = \nu \nabla^2 \mathbf{v} + \mathbf{f}, \quad \nabla \cdot \mathbf{v} = 0$$

INTRINSIC RANDOMNESS OF HIGH-REYNOLDS FLUIDS ?

Navier-Stokes equations
$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = \nu \nabla^2 \mathbf{v} + \mathbf{f}, \quad \nabla \cdot \mathbf{v} = 0$$

Random

Rough

Two simpler examples of intrinsic randomness

Fluid trajectories

Shear layer instability

In both examples, intrinsic macroscopic randomness will emerge from a subtle interplay between **thermal noise** and the presence of some type of small-scale **roughness**. This is the framework of **spontaneous stochasticity**. 1. Apparent vs intrinsic randomness

2. The spontaneous stochasticity mechanism

3. Open projects

Roughness produces infinite amplification of thermal noise in finite-time.

Roughness produces infinite amplification of thermal noise in finite-time.

$$\mathrm{d}\mathbf{X}_{\kappa,\eta} = \mathrm{d}v_\eta(t,\mathbf{X}) + \sqrt{2\kappa}\,\mathrm{d}\mathbf{W}, \qquad v_\eta(x+r) - v_\eta(x) \sim r^h \;\; \text{as} \;\; r,\eta o 0$$

 η : smoothing

 κ : thermal noise.

$$\langle d \mathsf{v}_\eta(t, \mathbf{x}) d \mathsf{v}_\eta(t', \mathbf{x}')
angle = \mathcal{C}_{\eta, h}(\mathbf{x} - \mathbf{x}') \delta(t - t') dt$$

For suitable limits $\eta, \kappa \to 0$, initially coincident trajectories may reach O(1) separations,

in finite time,

with probability 1.

 \implies such trajectories are "spontaneously stochastic".

$$\begin{array}{l} \textbf{Spontaneous stochasticity} \Longleftrightarrow \exists \lim_{\substack{r_0,\eta \to 0 \\ \kappa \to 0}} \mathbb{P}\left[\tau_1 < \infty\right] = 1, \\ \\ \textbf{with } \tau_\eta(r_0,\eta,\kappa) := \inf\left\{t, \|R\|_\eta < \eta\right\} \qquad \tau_L(r_0,\eta,\kappa) := \inf\left\{t, \|R\|_\eta > L\right\} \end{array}$$

Example: 2 particles in a rough 1d field

Separations are governed by the operator

$$\mathcal{L}_2 := 2K_2\partial_{rr}, \qquad K_2 := \frac{D_0}{2} \|r\|_{\eta}^{\xi} + \kappa$$

▶ Whether or not particles separate depends on the small-scale!

$$\mathbb{P}\left[\tau_1 < \tau_\eta\right] = \frac{r_0 - \eta}{1 - \eta} \rightarrow_{r_0, \eta \to 0} 0$$

Statistics map to Bessel process in dimension $d_f = 2\frac{1-\xi}{2-\xi}$

Roughness produces infinite amplification of thermal noise in finite-time.

INTERPLAY BETWEEN NOISE AND VISCOSITY: Overdamped Brownian particle in singular potential

Algebraic separation R(t) := X'(t|0) - X(t|0)

$$\mathrm{d}R = -U_{h,\eta}'(R)\,\mathrm{d}t + \sqrt{2\kappa}\,\mathrm{d}W, \quad U_{h,\eta}(R) := 1 - \|R\|_{\eta}^{1+h}$$

h < 1: spatial roughness η : smoothing κ : thermal noise.

How much time to reach |R| = 1 from |R| = 0 ?

INTERPLAY BETWEEN NOISE AND VISCOSITY: Overdamped Brownian particle in singular potential

Algebraic separation R(t) := X'(t|0) - X(t|0)

$$\mathrm{d}R = -U_{h,\eta}'(R)\,\mathrm{d}t + \sqrt{2\kappa}\,\mathrm{d}W, \quad U_{h,\eta}(R) := 1 - \|R\|_{\eta}^{1+h}$$

h < 1: spatial roughness η : smoothing κ : thermal noise.

How much time to reach |R| = 1 from |R| = 0 ?

 $h < 0, \eta \neq 0$

INTERPLAY BETWEEN NOISE AND VISCOSITY: Overdamped Brownian particle in singular potential

Algebraic separation R(t) := X'(t|0) - X(t|0)

$$\mathrm{d}R = -U_{h,\eta}'(R)\,\mathrm{d}t + \sqrt{2\kappa}\,\mathrm{d}W, \quad U_{h,\eta}(R) := 1 - \|R\|_{\eta}^{1+h}$$

h < 1: spatial roughness η : smoothing κ : thermal noise.

How much time to reach |R| = 1 from |R| = 0 ?

 $0 < h < 1, \eta \neq 0$

-1 < h < 1

Average escape time in the limit $\eta, \kappa \rightarrow 0$

This suggests the spontaneously stochastic scaling $\kappa \propto \eta^{1+h}$

The limit $\eta \rightarrow 0$ is spontaneously stochastic for -1 < h < 1 :

- **Formally deterministic:** The amplitude of the noise vanishes $\kappa \rightarrow 0$
- Remanently stochastic: Particles starting from 0 reach O(1) separations in finite-time.

Roughness produces infinite amplification of thermal noise in finite-time.

SINGULAR SHEAR-LAYER INSTABILITY

When the perturbation scale vanishes, e.g. $k \to \infty$, the growth rate explodes: $\sigma(k) \to \infty$

 \Rightarrow Breakdown of linear theory

When the amplitude vanishes, the inviscid problem becomes ill-posed

 \Rightarrow Singular initial-value problem

THE STOCHASTIC SHEAR-LAYER INSTABILITY

THE STOCHASTIC SHEAR-LAYER INSTABILITY

Numerical observations:

(i) Finite-time amplification(ii) Infinite gain 2

The spontaneously stochastic shear-layer instability

In the limit $\eta, \kappa \to 0$, the dynamics is stochastic from $t = 0^+$, but the underlying equations are formally deterministic.

 \Rightarrow It is intrinsically random

D. Mar 2, Janoin Marry 2, 2, 3, 3, 4, 2, 1

Roughness produces infinite amplification of thermal noise in finite-time.

1. Apparent vs intrinsic randomness

2. The spontaneous stochasticity mechanism

3. Open projects

Dissipative

Rough

How does multi-fractality and irreversibility alter spontaneous stochastic motion of fluid particles?

Methods

Multi-fractal random fields introduced by Chevillard, based on Gaussian multiplicative chaos to model intermittency.

Road map

- 1. Numerical simulations of SDE
- 2. Qualitative behavior of trajectories
- 3. Connection to DNS signatures of Lagrangian irreversibility

Possible developments

- Pink intermittency of scalar fields
- Statistical geometry of trajectories

PROJECT 2: STOCHASTICITY OF SQG TURBULENCE

Can one identify post blow-up signatures of stochasticy in SQG turbulence?

Methods

Numerical experiments and statistical analysis of SQG dynamics.

Road map

- 1. Pre-blowup: Scenario to singularities
- 2. Blow up : Fate of localized/homogenous perturbations
- 3. Fully developed: Lagrangian stochasticity vs intermittency

Possible developments

- Generalized SQG flows
- Stochasticity of 3D turbulence onset

Thank you for your attention!