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The blowup problem in mathematical fluid dynamics addresses the settlement of non-Lipschitz
singularities within a finite-time horizon, out of sufficiently smooth initial data. One of the
simplest scenarios is that of asymptotic self-similarity, which describes the finite-time algebraic
convergence towards a universal self-similar profile, prescribed as a non-linear eigenvalue problem.
Examples of self-similar blowups are found in the simplified setting of cascade models, including
in particular diffusive approximations and shell-representations of fluid dynamics. In these local
dynamics, I will discuss insights from various numerical strategies addressing the underlying non-
linear eigenvalue, from shell-time renormalization scheme to bifurcation theory and brute-force
optimization.

1. Blow-up problem

• K41 Roughness

• Blow-up problem

• Beale-Kato-Majda

• Leith vs Sabra

2. Leith

• Formulation and connection to the singularity problem

• Observations (Anomalies)

• Homoclinic interpretation

• Dombre-Gilson interpretation

• BKM

3. Sabra

• Formulation

• (DG) Observations

• Eigenvalue problem

• Sabra hierarchy

• Homoclinic explosions
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• Non-universality

4. Concluding remarks

• Discrete vs continuous: universal or not Self-similar blowups

• Equivalence between DG and homoclinic formulation

• Hierarchy beyond self-similarity ?

2



1. Blow-up problem

The blow-up problem describes the finite-time development of Holder singularity out of
sufficiently smooth initial data. It is believed to be of fundamental importance related to the
onset of turbulence in fluid systems. At this stage, let us recall that turbulence is a fluid state
characterized in particular by a high degree of roughness. Kolmogorov theory of Navier-Stokes
turbulence prescribe infinite gradients and Holder regularity, sustained by a cascade mechanism

U` ∝ (ε`)1/3.

In the NS equations, the blow-up scenario is unsettled – see [Gibbon ’08].

Criterion exist. For example, the Beale-Kato-Majda criterion states that smooth solutions to
the NS can be continued indefinitely unless the integral

∫ t∗
0 ‖ω‖∞ diverges). This implies that

blow-ups must have rates higher than ‖ω‖∞ ' 1/(t∗ − t).

Our purpose here is to address the blow-up in simple cascade models of turbulence.

The models are

• Leith model: diffusion in Fourier space [Leith ’67, Connaughton & Nazarenko ’04, Grebenev
& al ’14, ST & al ’15, ST & al ’21]

• Sabra model: a system of damped coupled oscillators [Biferale ’03, Dombre-Gilson ’98,
Andersen-al ’00, Constantin-al ’07, Mailybaev ’12]

Leith and Sabra share some essential features:

• Kolmogorov (rough) scaling

• Non-linearity

• Locality

The main structural difference is the discrete vs continuous nature. This will be an issue. We
can also point out that shell models usually display intermittency, but not Leith.

Blowup problems map to dynamical system theory. The difference between discrete and continuous
will be a difference in the dimensionality. Today, blowups will turn out to be self-similar, meaning
that when suitably rescaled, the finite-time blow-up can be seen as a travelling wave in logarithmic
space. The blowup speed cannot be determined by dimensional analysis and relates to the presence
of anomalous scaling, which we we will define and analyse.

2. Leith model

a. Formulation

Fourier Space
∂tE + ∂kP = 0, with P := − 1

d+ ξ
kmEn∂k(E/kd−1) (LM-k)

n represents the nonlinearity. d is a space-dimensionality. m is an adhoc parameter, which
prescribes that the Leith model exhibits Kolmogorov scaling. We set m = d+ (n+ 1)(ξ + 1) in
terms of the roughness parameter ξ. For the sake of this presentation, think about
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n = 0 or n = 1/2, d = 3, ξ = 2/3

It is not hard to check that Eq.~(LM-k) has the exact power law solutions

E ∝ k−ξ−1, P ∝ 1 (K41) and E ∝ kd−1, P=0 (Equilibrium)

Connection to the singularity problem.

The physical-space representation of LM uses the variable U(`) = kE(k), ` = 1/k. U represents
the scaling part of a correlation function (second order increments) and obeys the dynamics
(Remember ∂k = −`2∂`!)

∂tU + `∂`Π = 0, with Π(`) := − 1
d+ ξ

`2+n−mUn∂`(`dU) (LM-x)

The scaling solutions are

U ∝ `ξ,Π ∝ −1 (K41) and U ∝ `−d, P = 0 (Equilibrium)

b. Observations

Figure 1: Finite-time blow up featuring anomalous exponent in its trail.

c. Homoclinic viewpoint

Scaling Ansatz. We look for a non-constant flux solution

E(k, t) = k−x−1
∗ F (η), η := k/k∗, k∗ := (t∗ − t)−b

with b(x) := 1
n(ξ − x) + ξ

> 0

Under this scaling ansatz, the flux becomes

P = k
(n+1)(ξ+1−x)
∗ Π(η), Π := −ηmφn(φ/ηd−1)′,

The profile F is determined by the BV problem

− b(xF + ηF ′) + Π′ = 0, Π(η) = −ηmFn
(
Fη1−d

)′
(1)
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with limits
F ∼ η−x−1, Π(η) ∼ η(n+1)(ξ−x) at 0

Homoclinic explosion. The problem is most conveniently analyzed upon introducing log-similarity
variables F,Π, η → f, p, τ = 1

bn
log(η) and the rescaled profiles

f(τ) = ηαF, p(τ) = ηα−1Π, α := 1 + ξ

(
1 + 1

n

)
= x+ 1 + 1

bn

The BV problem then becomes

(nb)−1ḟ =
(
ξ

(
1 + 1

n

)
+ d

)
f − pf−n, et (nb)−1ṗ = ξ

(
1 + 1

n

)
p+ b(x)

(
(x+ d)f − f−np

)
.

(2)
under the boundary behaviors

• τ → −∞ (η → 0):
f ∝ eτ → 0, p ∝ e(n+1)τ → 0

• η →∞:
f, p→ 0

The looked-for solution is a homoclinic bifurcation of the autonomous system. In this 2d
situation, this observation provides unicity of the self-similar profile. The eigenvalue x can
be found from standard techniques.

Figure 2: Homoclinic explosion in the Leith model determined by numerical continuations.

d. Dombre-Gilson (DG) viewpoint

The autonomous system was obtained by the following sequence

Leith → ansatz → autonomous system → Homoclinic explosion
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The same final system can be retrieved by following the following and somewhat less formal path

Leith → Vorticity → DG rescaling → Traveling wave

Define the vorticity variables W := kαE = `1−αU . Then,

1. the Leith Model becomes the homogeneous dynamics

∂tW + L1[Π] = 0, Π = −L2[Wn+1],

for L1 = k∂k + (1− α)Id, L2 := 1
n+ 1k∂k + (1− d− α)Id

(LM-W)

2. Under the Dombre-Gilson rescaling (DG),

f(τ, κ) := e−τ/nW, τ = − log(t∗ − t), κ = log k

the LM-W system becomes

∂τf = L1[p]− 1
n
f = 0, p(τ, κ) := −L2[fn+1] (3)

where L1,2 are obtained from L1,2 upon replacing k∂k → ∂η. Considering traveling wave
solutions f(τ, κ) = f̃(κ− bτ) recovers the autonomous system up to a global rescaling of
the similarity variable. The DG transforms a finite-time blow-up to a traveling
wave over an infinite-time window!

3. It is straightforward to check that the Lp norms of the vorticity blow up for the similarity
solutions. Specifically, one obtains for all p > 0

Wp ∝ k
1
p

+ 1
bn

∗ , Wp :=
(∫ ∞

0
W pdk

)1/p
. (4)

This implies the diverging behavior Wp ∝ (t∗ − t)−b/p−1/n. In particular W∞ ∝ (t∗ − t)−1/n,
taking n = 1/2 and identifying W∞ with the squared vorticity, one recovers the BKM rate W∞ ∝
(t∗ − t)−1. This also provides interpretation of the DG scheme: f(τ, κ) = e−τ/nW ∝ W/W∞.
When normalized by its peak, the front behaves as a wave propagating at speed b across the
log-scales – See Fig 3.

4. The similarity profile has infinite energy, coming from ir divergence at η → 0. This is
consistent with the fact that the anomalous scaling is . . . anomalous, in the sense that it
cannot be deduced from dimensional analysis and energy conservation!

3. Shell model

a. Setting

1. We will now extend our consideration to the shell model cases. The Sabra model [L’vov-al
’98] prescribes the dynamics

u̇n = Nn[u] := ikn
(
λun+2u

∗
n+1 − (1 + c)un+1u

∗
n−1 − cλ−1un−1un−2

)
, n ∈ Z (Sabra)

6



Figure 3: Dombre Gilson interpretation of the Leith blow-up.

in terms of complex velocity variables un defined on a geometric progression of scales
`n = k−1

n = λ−n with λ > 1 the intershell ratio. The coefficient c is here prescribed to be
negative, and we later write it as c = −λ−g with g a positive constant. In this form, Sabra
preserves G =

∑
n(−1)nλgn|un|2 and E =

∑
n |un|2. Think about g = −1 for the clasical

Sabra dynamics mimicking the Navier-Stokes.

2. From previous numerical works under the DG scheme: The blow-up is self-similar with
anomalous exponents ' 0.28. Specifically, prescribe imaginary dynamics un ∈ iR. The
similarity Ansatz reads

un = −ik−x∗ U (ηn) , with ηn := kn/k∗, and k∗ := (t∗ − t)−
1

1−x (5)

in terms of the scaling exponent x < 1 and the blowup time t∗ < ∞. The minus sign is
conventional, The autonomous form of the Sabra BVP involves the vorticity

W(τn) = ηnU(ηn), τn = log ηn

and takes the form of the fixed point problem

Ẇ = F [W] , F [W] =W + λ−2W+2δW+δ − (1 + c)W+δW−δ + cλ2W−δW−2δ (6)

with the shorthand Wjδ(τ) := W (τ + j(1− x) log λ), and boundary conditions W ∼
−∞

eτ → 0, W →
∞

0.

3. Promotion to a continous setting: W =W(τn), n ∈ Z→W(τ), τ ∈ R

4. Elementary fixed points : W0 = 0 and WH = λ2

(λ2−1)(1−cλ2) > 0.

5. Hopf: xHopf = 1− (λ2−1)(1−cλ2)
(1−cλ4) log λ

arccos ρ
(1+2ρ)

√
1−ρ2

< 1, for ρ the root with norm <1 of

ρ2 +
(1

2 −R
)
ρ+ R

2 − 1 = 0, R := c+ 1
cλ2 + λ−2 . (7)
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Figure 4: Numerical observations of Sabra dynamics.

b. Sabra Hierarchy

The presence of positive and negative delays make the fixed point equation cumbersome to solve!
To retrieve a dynamical system framework, we Taylor-expand in the bookkeeping parameter
δ = (1− x) log λ as

Wk(τ) =
M∑
i=0

kiδi

i! W
(i)(τ) +O(δM+1), (8)

which in turn yields for the F -functional

F [W] =W(0)(τ) + 1
2

M∑
k=0

δk
∑
i+j=k

σijW(i)(τ)W(j)(τ) +O(δM+1) (9)

In terms of Xk = δkW(k), and considering successive truncations at order O(δM ), we obtain the
Sabra hierarchy, %

δ Ẋk(τ) = Xk+1, 0 ≤ k ≤M − 2, σ0MδX0ẊM−1(τ) = GM , (10)

with boundary conditions X(τ) →
±∞

0. With the singular time θ =
∫ τ

0
dτ ′

δX0(τ ′) , we obtain the
(non-singular) hierarchyM = 2 : X ′0 = X0X1, σ02X

′
1 = −X0 + X1

δ
− 1

2σ00X
2
0 − σ01X0X1 −

1
2σ11X

2
1 = G2,

M = 3 : X ′0 = X0X1, X
′
1 = X0X2, σ03X

′
2 = G2 − σ02X0X2 − σ12X1X2 = G3, etc.

(11)
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with GM+1 = GM − σ0MX0XM −
1
2

∑
i+j=M+1
1≤i,j≤M

σijXiXj , (12)

and the coefficients

σij = λ−2(2i + 2j)
i!j!

(
(−1)i+jcλ4 − (−1)i + (−1)j

2i + 2j (1 + c)λ2
)

c. Bifurcation scheme

• Local analysis:
– Set of fixed points independent from M : the origin and XH = (WH, 0, 0, . . . ) .
– XH is isolated while the origin is part of a wider set

Z(M)
0 =

{
X = (0,X+), with X+ ∈ RM−1 & GM [(0,X+)] = 0

}
(13)

• At all orders, we evidence the scenario

stable fixed point → Hopf bifurcation → stable limit cycle → homoclinic orbit.

• Note however the degeneracy of the homoclinic cycle!

4. Beyond fundamentals

Direct optimization of the fixed point equation with stochastic gradient descent suggest non-
unicity of the blowup, with discrete x∗ > 0.28

Those self-similar profiles are seen in DNS.

5. Concluding remarks

• Analogy Leith/Sabra: Blowup characterized with DG-traveling wave/homoclinic explosion

• Sabra : richer dynamics and non-universality of blowup (Non uniqueness).

• The sign of the anomaly is model-dependent.

• Three methods: DG, ML, hierarchy.

• The perturbative strategy proves highly efficient, with exponentially fast convergence in
M towards the fundamental solution. The ML substantiates underlying complexity by
providing a simple tool to detect nontrivial and unstable solutions. Both strategies might
be used in more complex framework, beyond the 3D Sabra model.

• Beyond self-similar blowups, the Dombre-Gilson scheme and its variants has revealed
that shell models could exhibit a variety of blowup scenarios, including the possibility
of chaotic blowups describing the asymptotic finite-time convergence onto a self-similar
chaotic attractor. Can transition to chaos be analysed with a hierarchical strategy?
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Figure 5: Convergence of the homoclinic explosion.
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