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Lagrangian variational formulation of ideal fluid motions

CIR

ARNOLD, 1966
e Lagrangian map : a — X.(a) € Sdiff (Q2)

@ Variational Principle :

t XO)
Ayt ::/ E[X:]dt — inf prescribing ) &3
& det X; = 1.
o Euler equations through geodesics : X, = —Vp
o ldeal invariants through Noether Charge:
tr

5Q = U da 7(a) - 5X.(a) — Hot
D to
= Widespread applications for geo-physical/plasma modeling : SALMON,1983, MORRISON,1998,...

But (i) Solutions may not exist EBIN & MARSDEN,1970, SHNIRELMAN, 1987
(ii) Restricted to classical solutions of the Euler equation
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Turbulence modeling and Euler equations

Physical evidence of a “turbulent measure” :

From CHEVILLARD ET AL, 2012

SREENIVASAN, 1998

o Navier Stokes : 9;v+v-Vv+Vp="f+vV3v

unfilled squares: Jimenez et al., forced
filled diamonds: Wang et al., decaying

. forced
unfiled diamonds: Yeung, & Zhov, forced
filled squares: Cao et al., forced

@ Turbulent limit : Joint limit t - oco and v — 0

Dissipation

Which distributional Euler solutions to describe high-Reynolds motions ?

o Scratch construction of “turbulent mimicking” solutions to Euler,
but not obtained as a limit ¥ — 0, and in general non-unique.
= Examples are the dissipative solutions of ScHEFFER, 1993; DE LELLIS & SZEKELYHIDI,
2012, IseTT, 2016; BUCKMASTER & AL , 2017 in connection to Onsager's conjecture.

o Candidate limits v — 0 (e.g, DiPerna-Majda measure-valued solutions)
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A Lagrangian turbulent hallmark : intrinsic stochasticity of trajectories

Roughness A Intrinsic impredictibility
of the velocity field of the transport
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Turbulent transport is spontaneously stochastic

Fixed realization of velocity = Lagrangian transition probabilities

5/18 GAWEDZKI,2001, LE JAN & RAIMOND, 2004 ...



Generalized variational principle Brenier, 1989, 1999

@ Generalized flow : probability measure on the Lagrangian paths

t — Z(t) € Qo

o Generalized variational principle :

. o ’Y(dZO7 de)
Bly] = DZ|E[Z f b
(7] /’y[ 1€[Z] — inf prescribing { (dZ,) = Lebesgue

@ Desirable features:
1. Existence of optimizers guaranteed by doubly-stochastic boundary coupling.

2. For determistic coupling given by a classical solution to Euler, classical
solutions to Euler are retrieved for small enough tr — to.

3. Non-deterministic solutions exist, with formal link to DiPerna—Majda
distributional solutions for small t; — to

4. Dissipative Euler solutions can be constructed (“sticky flows” SunireLMAN,1999)
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Questions from the turbulence modeling perspective

. Are generalized flows physically relevant ?

. Do they exhibit turbulent features ?

. Can generalized variational formulations be of relevance to describe

inertial-range/coarse-grained dynamics ?
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Numerical construction of generalised flows

Coarse-graining via random permutations

@ Space-time discretization

@ Generalized flow :

Ensembles of random permutations

L@
//

to

t,ip — 0'(:(/'0)

Monte-Carlo estimates

@ Gibbs measure (with BC) : pg = ﬁe‘ﬂ““d["]

Ne
o Discrete Action : A4[o] = ZZ llon(i) — o n_1(i)|?
n=1 i

Remark : Finite /3 fluctuations akin to the “entropic regularization” used in
9/18 NENNA. 2016 (PuD) : BENaAMOU & AL, 2015

tr
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Small tr : Reconstruction of a classical solution (i)

Test case : Stationary cellular velocity field on Q = [0, 7]? (Beltrami):

va(x, t) = m(— cosy sinx X 4 cos xsiny §) Critical time : tf =1

Coarse-graining on a

M grid with size
NZ = 642
p=1
m Timesteps of size
At =1t;/8
Classical

solution
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Small tr : Reconstruction of a classical solution (i)
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Inverse temperature 3

— Convergence towards classical solution in the zero temperature limit 5 — oo
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Large tr : Non-deterministic solution
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@ The intermediate generalized dynamics is not Beltrami

@ Is it “Thermalized” ? or “Turbulent” 7 or even "“Physical”?
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Eulerian features of the generalized Beltrami flows

Average energy spectrum E(k)

10 10' 10°

Wavenumber k

Small tr : Convergence of the
spectra as [ — o0.

Energy spectrum E(k)

1078

Persisting

thermal noise

10'
Wavenumber k

Various tr: Spectra at tr/2.

= Generalized flows for large t; have non-trivial IR signatures, different from
random flows.



Lagrangian features of the generalized Beltrami flows

Growth of separations Lagangian trajectories
7

Small tf

Large tr

Time n

—> Lagrangian statistics are not “turbulent”.
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Variationnal principle and large final times

@ The maximal final time is determined as : t;

~ sup, . [[Hessian[p] />
o "Defect” of the Boundary-value formulation itself

@ lllustrative example :

Reconstruction
of a solid-rotation
pulse Q from
Arnold's

b < t,

Qapv/Q
o

principle. P

= Shortcuts are cheaper for large final time!



Reconstruction of a non-stationary dynamics : decaying 2D

w(x,t)

In the limit v — 0, dynamics is in principle
described by irreversible weak solutions of
the Euler equation.

(e.g. EvINK , 2001)

b~ 20—1/2
Original simulation : 10242
Generalized flow : 642

= Irreversibility encoded in the final map?

10 20 30 40 50 60 70 80 90 100

17/18 t Z12(0)



Final messages

Conclusions

@ Boundary value formulation is ill posed for large timelags = the
Corresponding generalized flows are then unphysical.

@ For small timelags generalised flows can capture irreversible behaviours
@ Possible tool to coarse-grain turbulent flows...

@ ... provided some weak Euler solutions are themselves relevant for turbulence.

Perspectives/Work in progress

@ Reconstruction of multiscale turbulent measures ?
e.g. 2D Inverse cascade/ 3D direct cascade

@ Beyond MC algorithm ? Semi-discrete transport, Entropic Regularization...
MERIGOT & MIREBEAU, 2015 ; NENNA, 2016, ...

@ Beyond t, : Further constraints (Energy/Enstrophy)?
1818 Generalised Conservation laws?
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